
FRC Programming in wpilib
FRC Team 2059

By Mj
Co-Captain and Programming Lead

Tech Stack
MS Visual Studio IDE

Java

WPI Library (abstracts hardware)

http://cougartech.org/resources/Training/3-Engineering/CTSoft1-FRC%20Soft%20Design%20Process%20and%20Prog%20Structure.pdf

WPI Library

https://stemrobotics.cs.pdx.edu/sites/default/files/WPILib_programming.pdf

Gives you Sensors,
Motors classes to
work with so you
don’t have to write
device drivers

Encoders are
devices used to
measure motion
(usually, the
rotation of a
shaft).

A gyroscope, or
“gyro,” is an
angular rate
sensor typically
used in robotics
to measure
and/or stabilize
robot headings.

Motors

Installation and Command Based Robot (Sort of HelloWorld.java)

1. Use MS Visual Code IDE but
distributed by WPI; instructions

a. Eclipse does not seem to be an IDE
of choice WPILib in Eclipse

b. If there are issues installing turn
off the antivirus temporarily

2. Listen to YouTube video to learn
WPLIB in VS Code and how to use MS
Visual Code

3. Fire up MS Visual Code and create
a sample project with “WPI
Template” to create a “Command
Based Robot” in “Java” with team
2059

4. This will create a gradle (build)
file along with a lot of template
code

https://docs.wpilib.org/en/stable/docs/zero-to-robot/step-2/wpilib-setup.html
https://alex-spataru.gitbooks.io/frc-robot-programming/content/Book/Chapters/3.1.html
https://www.youtube.com/watch?v=64hPDvphcfA
https://www.youtube.com/watch?v=ihO-mw_4Qpo
https://www.youtube.com/watch?v=ihO-mw_4Qpo

Command Based Robot : Auto Generated Code
So far we have
auto-generated code (6
classes) based on the
template we had
selected.

1. Robot.java
2. RobotContainer.jav

a
3. Constants.java
4. Main.java

5. ExampleCommand
6. ExampleSubsystem

How does it work at a high level? Who calls what and
when? WIP….work in
progress..

Use DRAW.IO for Sequence Diagrams and Learn about Sequence Diagrams at https://creately.com/blog/diagrams/sequence-diagram-tutorial/

Structuring a Command-Based Robot Project https://docs.wpilib.org/en/stable/docs/software/commandbased/structuring-command-based-project.html

Command Based Robot Framework

Main.java
● Main entry point

or the class
● Its main method is

called by RoboRio
at start
automatically; You
never call it
directly.

● The main method
instantiates your
Robot.java by
calling its
constructor

Robot.java: Understanding Generated Code

Primary Class that
gets instantiated.

Two types of functions

● Init()
● Periodic()

init()
Initializi
ng called
once when
the motor
is started

periodic()
are called
repeatedly
every 0.02
seconds TO
updated
the
commands
running on
the robot

Robot.java: two types of functions

Robot.java: Depending on the Mode different methods are called

What Is a “Command-Based” Robot vs. Timed Robot or Iterative
● Input (Joystick) and Output (Motor)
● Essentially a design pattern

(boilerplate framework/code) that
reduces the amount of code one has
to write to get a robot to do
something.

● This kind of robot is composed of
two parts, viz., Command and
Subsystem

● You bind Commands in your code to
an Input Controller (e.g. Joystick
button)

● You focus on “command” (actions)
and “subsystem” (sensors or a
motors) objects.

● Subsystems represent the actual lower
level hardware such as different types of
Actuators (e.g. motors, pneumatic) and
Sensors in your code. A subsystem can be
a group of motors or sensors or just one
motor or a sensor

● Commands represent actions or behavior one
wants to send to a subsystem. An action is
either starting (initializing), executing,
ending, or idle.

https://docs.wpilib.org/en/stable/docs/software/commandbased/what-is-command-based.html

Subsystem (think hardware sensor or a motor or a composition of these)

● You write methods to control hardware
or read sensor values. E.g.
grabHatch()

● periodic() is run once per run of the
scheduler

● Works through the CommandScheduler
● Can set default background commands that

are run when nothing else is scheduled.
E.g. keeping an arm held at a setpoint.

● Is initialized via the Robot class
methods (that are suffixed with init())

Subsystems https://docs.wpilib.org/en/stable/docs/software/commandbased/subsystems.html

E.g. A Drivetrain
subsystem will consist of
a left Motor and a right
Motor, along with the
method
setSpeed(double s)

https://docs.wpilib.org/en/stable/docs/software/commandbased/subsystems.html

● A 3 state machine
● Knows about a SubSystem (takes

it in constructor)
● You fill in the templated

methods
● Calls Subsystem methods
● The CommandScheduler will not

schedule more than one Command
for a SubSystem at a time.

Command (think action on a motor or sensor or on a group/subsystem of these)

Commands https://docs.wpilib.org/en/stable/docs/software/commandbased/commands.html

initialize()

execute()end()

https://docs.wpilib.org/en/stable/docs/software/commandbased/commands.html

CommandGroups (think MULTIPLE COMMANDS GROUPED TOGETHER FOR EASE OF USE)

1. Working with 3 State commands can
get cumbersome

2. A grouping of multiple commands to
reduce complexity in programming

3. Takes in one or more Subsystems in
constructor

4. Four types of templated groupings
● SequentialCommandGroup
● ParallelCommandGroup
● ParallelRaceGroup
● ParallelDeadlineGroup

Command Groups https://docs.wpilib.org/en/stable/docs/software/commandbased/command-groups.html

https://docs.wpilib.org/en/stable/docs/software/commandbased/command-groups.html

Joystick Button/Input Trigger: Binding to a Command
● How do you run a command if not

autonomous mode?
● E.g. a button press by a human.
● Solution: bind the command to this

triggering event
● Instantiate the actual hardware class

that initiates input/trigger (e.g.
XBOXController)

● Bindings only need to be declared
once, ideally some time during robot
initialization. The library handles
everything else.

Command Bindings to Triggers
https://docs.wpilib.org/en/stable/docs/software/commandbased/binding-commands-to-triggers.html

In RobotContainer.java

// Creates a joystick on port 1
Joystick exampleStick = new Joystick(1);

// Creates a new JoystickButton object for button 1 on exampleStick
JoystickButton exampleButton = new JoystickButton(exampleStick, 1);

// Binds an ExampleCommand to be scheduled when the trigger of the example joystick is pressed
exampleButton.whenPressed(new ExampleCommand());

 // Binds a BarCommand to be scheduled when that same button is released
exampleButton .whenReleased(new BarCommand());

https://docs.wpilib.org/en/stable/docs/software/commandbased/binding-commands-to-triggers.html

CommandScheduler

● Is a Singleton; use
CommandScheduler.getInstance()

● You never call its methods except to
start
(CommandScheduler.getInstance().run(
)) it from your Robot’s
robotPeriodic()

Command Groups https://docs.wpilib.org/en/stable/docs/software/commandbased/command-scheduler.html
https://first.wpi.edu/wpilib/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/CommandScheduler.html#run()

● You call its schedule() to schedule a
command; its initialize() method is
called after getting added

● Runs the actual commands
automatically through the run()
method

One call to run() is one iteration.
Each iteration (ordinarily once per 20ms), the scheduler execution occurs
in the following order:

1. call Subsystem periodic() methods
2. poll the state of all registered triggers/buttons, get new commands
3. schedule new commands for execution
4. run the command bodies of all currently scheduled commands
5. check end conditions on scheduled commands and end those

commands that have finished or are interrupted

The run() Method

https://docs.wpilib.org/en/stable/docs/software/commandbased/command-scheduler.html
https://first.wpi.edu/wpilib/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/CommandScheduler.html#run()

To control the Robot motor you need a Motor Controller
1. From Java code

(burned in
RoboRio) you
can send a PWM
signal to the
Motor
Controller
telling it how
fast to spin a
motor

2. The motor
controller
will take the
signal into a
voltage output
to the motor

What is a Motor
● A type of an

Actuator class in
WPILib

What is RoboRio
● The brain of the robot where

the code will be deployed
and run

● Headless, no GUI, need only
a Jar

● has many ports that are used
in coding and for connecting
to different devices

○ USB – to deploy code
○ CAN – used to control not only

the pneumatics, but we use it
for motor controllers that
support CAN. CAN is the easiest
way to wire things vs. using
PWM, although at times we may
use PWM too.

○ PWM – for Motor Controllers
○ DIO – to connect to sensors
○ MXP – for board expansion
○ SPI – for a gyro meter

What is a Sensor
● Many types such as

○ Camera
○ Encoder

● To help robot
understand its
location and
physical space
around it

Java Coding Conventions

Java Coding Conventions
1. Use JavaDoc Documentation comments (/** * **/ to help you think about what

the method does and help others understand what it is supposed to do
without reading the code. A method encapsulates a behavior that one should
be able to describe without needing to read the code.

2. Use Block comments (/* * */) and single line comments /* */), or end
of line comments (//) to describe a variable or other parts of code

3. Do not use underscores in class or variable names
4. Once done coding, beautify your code
5. A variable name should be descriptive and

a. start with a lowercase letter following camel case. E.g. myDriveTrainSubsystem
6. A class name should be descriptive and

a. start with a capital letter following camel case. MyDriveTrainSubsystem
b. should include the name of the command or subsystem it is extending to help with

self-documentation (E.g. TeleopCommand)

Java Coding Conventions…
A good practice would be to specify in
Constants.java ports as constants. E.g.

Constants {

public static final int LEFT_MOTOR_PORT = 1;

public static final int RIGHT_MOTOR_PORT = 1;

public static final int JOYSTICK_PORT = 1;

public static final double PI = 3.14159;

}

Then you can access the variable in your code
as Constants.LEFT_MOTOR_PORT

Note the upper case and underscores to define constants
as static finals ; this is an exception to the regular
nomenclature in java for naming variables/class

Also note that making it public will allow you to access
the variable without getters/setters; again an exception
to accessing the variables via methods as these are
constants.

Two good programming resource Java for WPILib can be the
folowing;; Keep in mind it might be a little outdated
(2018)

1. https://frc6506.github.io/docs/Documents/Tome%20of
%20Secrets.pdf

2. https://buildmedia.readthedocs.org/media/pdf/frc-p
dr/latest/frc-pdr.pdf

Visual Tools from Microsoft Visual Code

PathWeaver to visualize trajectories
RobotBuilder to build a robot and export code
RobotSimulator to simulate robot code

Pathweaver tool and declarative trajectory
● PathWeaver tool/gui places .wpilib.json files in

src/main/deploy/paths which will automatically be placed
on the roboRIO file system in /home/lvuser/deploy/paths
and can be accessed using getDeployDirectory

● https://docs.wpilib.org/en/stable/docs/software/pathplan
ning/pathweaver/creating-pathweaver-project.html.

Robot Simulation tool
● Used for Autonomous

PID tuning

